368 research outputs found

    An FPGA-based controller for collaborative robotics

    Get PDF
    The use of robots is becoming more common in society. Industrial robots are being developed to work with people, and lower-force collaborative robots are being developed to help people in their everyday lives. These may need fast and sophisticated motion control and behavioral algorithms, but are expected to be more compact and lower cost. This paper proposes a processor plus FPGA solution for the control systems for such robots, where the FPGA performs all real-time tasks, freeing the processor to run lower-frequency high level control and interface to other devices such as camera systems. A demonstrator robot is designed, combining multi-axis motion control with 3D robot vision

    Smart LiFePO4 battery modules in a fast charge application for local public transportation

    Get PDF
    This paper describes the research effort jointly carried out by the University of Pisa and ENEA on electrochemical energy storage systems based on Lithium-ion batteries, particularly the Lithium-Iron-Phosphate cells. In more detail, the paper first illustrates the design and experimental characterization of a family of 12 V modules, each of them provided with an electronic management system, to be used for electric traction. Then, the sizing of the energy storage system for an electric bus providing a service with 'fast and frequent' charge phases is described

    Low-cost modular battery emulator for battery management system testing

    Get PDF
    This paper discusses the implementation of a custom battery emulator, specifically designed for functional testing of battery management systems at the end of the production line. Particular care has been paid to make the design of the battery emulator modular and low cost. These characteristics are sought in relatively low-volume medium-power battery applications, where the adoption of conventional hardware-in-the-loop solutions is not viable. A prototype of battery emulator has been implemented, validated, and successfully used to test a battery management system for 12 series-connected cells

    Tuning of Moving Window Least Squares-based algorithm for online battery parameter estimation

    Get PDF
    Online battery parameter identification algorithms, such as the Moving Window Least Squares, allow model-based state estimators with low computational intensity to be very accurate. This paper presents a procedure for tuning the algorithm parameters by using application-specific current profiles. A gardening application is taken as a case study. The results prove the validity of the proposed procedure and allow us to assess the identification algorithm performance

    Simulation platform for analyzing battery parallelization

    Get PDF
    This paper discusses a simulation platform for predicting the behavior of a battery system comprising two batteries, which can be parallelized in a controllable way. The model of the battery, the load and the parallelization algorithm is developed and simulated in MATLAB® Simulink environment. The simulation platform and the proposed parallelization algorithm are validated in a real gardening application. The simulation results prove to be useful for further investigation into the benefits of battery parallelization in terms of reduced battery aging and improved energy efficiency

    Design of the battery management system of LiFePO4 batteries for electric off-road vehicles

    Get PDF
    This paper describes the design of a modular battery management system for electric off-road vehicles, where lithiumion batteries are expected to be widely used. A massive electrification of off-road vehicles can be enabled by the availability of a standard battery module, provided with an effective management unit. The design and some preliminary experimental results of the module management unit are discussed in this paper. The unit contains a high current active equalizer that enables the dynamic charge equalization among cells and maximizes the usable capacity of the battery

    Experimental Analysis of an Electric Minibus with Small Battery and Fast Charge Policy

    Get PDF
    The lead-acid battery of an electric minibus has been replaced with a smaller size lithium-ion battery system consisting of standard 12 V modules and a hierarchical battery management system. The minibus has experimentally been tested to show that the reduced battery capacity, which also cuts costs, does not affect the daily operational mission. This is assuming that the driving phases are alternated with fast charging periods. Experiments show that fast charging of 8 min guarantees up to 1 h of operation

    Flexible platform with wireless interface for DC-motor remote control

    Get PDF
    Several portable applications, such as small electric vehicles and power tools, often require the use of direct current (DC) motors that significantly differ from one to another in terms of power, torque, and driving techniques. New market requirements of these applications suggest the implementation of smart user interfaces that may allow the introduction of those devices in the new Internet of Things paradigm by making them connected. This paper discusses the design and verification of a flexible platform able to drive different types of DC motors that is also provided with a Bluetooth connection for remote control and monitoring. As the platform can drive different motors with different driving techniques, it provides standardisation and cost reduction in the production of a set of tools. Two gardening tools are used as case study to verify the design and flexibility of the board. Both tools are successfully controlled and monitored with a wireless connected remote user interface

    Implementation of the fast charging concept for electric local public transport: The case-study of a minibus

    Get PDF
    This paper shows an effective implementation of the fast charging concept in the electric local public transport context. An electric minibus powered with a lead-acid battery is considered as a case-study. Its traction battery is redesigned using 12 V standard lithium-iron-phosphate modules to benefit from the higher performance of the lithium battery technology compared to the lead-acid one. The minibus can achieve a continuous operation characterised by 20 min of traveling alternated with 10 min of standstill for fast recharging of the battery. Experiments performed on a single module of the battery show that the load profile is sustained without appreciable issues both in temperature and life degradation of the lithium cells
    corecore